
 

  62
 
 
 

 
Abstract — The authors’ methodology of creating 
e-learning content for the students of physiology, 
pathophysiology and biomedicine at the Faculty of 
Medicine is presented here. The design process 
from a formalized description of physiological 
reality to interactive educational software is 
described. Various tools are used during the 
design – starting with the numerical simulation 
software Matlab/Simulink, through Macromedia 
Flash for interactive animations, Control Web or 
MS Visual Studio for user interface design to web 
publishing tools including the Macromedia Breeze 
learning management system. Also, various 
professions are involved – teachers, physicians, 
simulation/modeling experts, graphic designers 
and programmers. The aim is to provide students 
with software that helps them understand the 
complex dynamics of physiological systems. 
 

Index Terms — Computer aided learning, e-
learning, medicine, physiology, simulation models 
 

1. INTRODUCTION 
HE process of medical e-learning content 
creation is a complex one. Interactive 

learning material promises to be more efficient 
than hypertext versions of medical textbooks with 
passive images, animations and video 
sequences. To provide interactivity, simulation 
models of real physiological systems are used to 
drive the animations based on the user’s actions. 
The Department of Biocybernetics and Computer 
Aided Teaching possesses a multidisciplinary 
team and software development tools that cover 
all stages of the design process of educational 
simulators in medicine. The connection between 
multimedia presentation and physiological 
simulation models facilitates comprehensive 
demonstration of complex regulatory processes 
and their disorders to medical students and 
physicians alike. 
   Physiological simulations have a long tradition. 
Formalized description of the physiological reality 
starts with the pioneering work of Grodins et al. 
[1] in the end of 1960’s. A classical milestone 
was a description of circulation by Guyton et al. 
[2] in the first half of 70’s, the first large-scale 

 
 Revised manuscript received May 25, 2005. This work was 
supported by the Research and Development Initiative of the Czech 
Ministry of Education MSM 111100008 (physiome.cz). 

Authors are with the Institute of Pathophysiology, 1st Faculty of 
Medicine, Charles University in Prague, Czech Republic 

Contact person: dr. Jiri Kofranek, e-mail: kofranek@cesnet.cz  

model, which attempted to cover in broader 
perspective the physiological interconnections 
between circulation, breathing and kidneys. 
Since then, the number of studies that use 
computer models (mainly for evaluation and 
interpretation of experimental data) is steadily 
increasing. Likewise, simulation models can be 
used in clinical applications and medical 
equipment control (so called minimal models with 
a simple structure and a small number of 
parameters that can be easily identified from a 
particular patient’s data) – e.g. a model of 
glucose metabolism [3]. 
   Various approaches have been taken in the 
field of educational simulators. The aim of this 
paper is not to analyze the simulation models 
behind the simulators but rather the methods of 
their formalization (according to the Physiome 
project – http://physiome.org) and incorporation 
into educational software. Special attention is 
paid to the creation of web accessible graphical 
user interfaces – Microsoft .NET platform in 
combination with Macromedia Flash animations 
is provided as an alternative to commonly used 
Java applets or pure Flash web-based simulators 
[4]. The paper summarizes the authors’ 
experience and achievements in this field. 

2. EDUCATIONAL SOFTWARE DESIGN 
Just as the reception of a text-book by students 
depends on the author’s ability to explain 
complex material in an illustrative and 
comprehensive way, the key to success of 
multimedia educational software is a good 
scenario. Thus the design cycle of our programs 
(see Fig. 1) begins with the creation of scenarios. 
A scenario comprises not only of textual material, 
but also of the cartoon strips of the “storyboard” 
which will later help the graphic designers create 
graphics and animations. 
   There are more professions involved 
throughout the development cycle besides the 
already mentioned graphic designers and 
physiology teachers (responsible for the 
scenario). On the level of constructing simulation 
models, cooperation has to be established 
among system engineers (skilled in mathematical 
modeling), physiologists and physicians 
eventually, if the model is supposed to be applied 
in clinical medicine. 
   Educational software creation is concluded by 
application programmers and web designers, 
responsible for wrapping the simulation models 

Kofranek, Jiri; Andrlik, Michal; Kripner, Tomas; and Stodulka, Petr  

From Art to Industry:  
Development of Biomedical Simulators 

T 



 

  63
 
 
 

with graphical user interfaces according to the 
scenario. The software then enters the testing 
phase in education and further refinements are 
made, if required by the teachers. 
   More on the respective phases of development 
will be given in the following paragraphs. 
 

Fig. 1 The development cycle of educational software 

2.1 Simulation models, chips and libraries 
The heart of an e-learning application is a 
simulation model of a physiological system. Such 
a model is usually based on a system of 
differential equations, which have their origin in 
measurements on humans (either healthy or 
under pathological conditions). The biological 
reality is transformed into a formalized 
description in the language of mathematics. 
   On the other hand, a purely mathematical 
description is not suitable for further 
communication of the system engineer with 
physiologists or physicians (who are to judge the 
correctness and quality of the model). Thus 
MATLAB/Simulink graphical modeling/simulation 
environment has been adopted and physiological 
systems have been deconstructed into atomic 
blocks – simulation chips. These blocks 
represent elementary physiological subsystems; 
simulation models are formed by networks of 
these interconnected chips, thus keeping the 
organized structure of the original physiological 
system. A chip communicates with other 
simulation chips through defined inputs and 
outputs (corresponding to physiological 
quantities). All the mathematical expressions 
needed to implement the physiological function 
are hidden inside the chip. The simulation chips 
are then the common language of system 
science and physiology. 
   Once a simulation chip has been created, it can 

be of course reused in a number of simulation 
models. This idea gave birth to a Simulink library 
of physiological blocks – the Physiology Blockset 
(see Fig. 2 and [13]). 

2.2 Containers for simulation models 
The MATLAB/Simulink environment is particularly 
good for professional creation, tuning and testing 
of simulation models, but due to its complexity it 
is not suitable for direct interaction with users. 
Solutions allowing rapid graphical user interface 
(GUI) development, and having sufficient 
computational power, at the same time had to be 
sought. 
   Two successful candidates for this post are 
available, both running on the Windows platform, 
are Control Web (CW), an industrial process 
control and visualization tool [6] and Microsoft 
Visual Studio .NET, a general purpose developer 
environment. Both of these tools can host the 
simulation model in the form of an external .dll 
library, provide rich means for creating GUI’s and 
also allow incorporation of interactive Flash 
animations. 
   Fig. 1 reveals that the process of creation of the 
model library is automated with the help of 
Simulink Real Time Workshop (RTW), which 
translates simulation models to C++ language, 
links them with a proper differential equation 
solver and builds a .dll. The target platform of the 
.dll depends on a RTW template; templates for 
creating both CW driver and MS .NET assembly 
were created in our laboratory [7]. 
 

 
Fig. 2 Simulation chips, the bricks of simulation 
models, organized in a MATLAB / Simulink library 

Scenarios
Scripting

Storyboard
Design

Model
Development 
& Testing in
MATLAB / 
SIMULINK

Translating model
 to C++ 

Language

Automated
building of a

 Control Web (CW)
virtual driver

Creating of interactive
FLASH graphics and animations

Development
of a training

simulator

Automated 
building of
a MS.NET 
assembly

Testing  in education

CW SIMULATOR

Virtual
.DLL driver
(containing
the model)

FLASH
interactive
animations

.NET
assembly
(containing
the model)

FLASH
interactive
animations

.NET SIMULATOR

Internet accessible interface
(e.g. Macromedia BREEZE)



 

  64
 
 
 

Creating graphical user interfaces 
Besides the standard GUI elements (buttons, 
sliders, text boxes, data grids...), there is a need 
for special controls in our e-learning applications 
like knobs and meters for manipulating the 
simulation model inputs and outputs. This 
explains the choice of Control Web as one of the 
simulation front-ends, as it offers a wide range of 
these “industrial level” controls. 
    Some custom components also had to be 
designed from scratch, e.g. intelligent graphs and 
controls for manipulating vector inputs. When the 
graphical capabilities of the above mentioned 
integrated development environments are not 
sufficient, Macromedia Flash can be used to 
create interactive animations that can be inserted 
in both CW and MS .NET application, as well as 
in web pages. The Flash animations can 
communicate through the ActiveX interface, 
which means that they can be controlled from 
their host application. 
   An interesting example of a graphical control 
created in Flash can be seen in the simulator of 
mechanical properties of a skeletal muscle [8], 
where the control, in the form of a muscle fixed to 
an experimental stand, serves as an input and an 
output at the same time. The user can drag the 
muscle to a desired length using a mouse and 
during the electrical stimulation; the same 
graphic visualizes the muscle contraction. 
   In most cases, interactive graphics created with 
Flash are used to visualize the outputs of 
simulation models, e.g. a dilating/contracting 
blood vessel, a change in the respiratory volume 
and the breathing frequency of an alveolus. 

2.3  UCM architecture and state management 
As the structure of the simulation model gets 
more complicated and the educational scenario 
grows more complex, it is not efficient to connect 
the model directly to the presentation layer. UCM 
architecture and State charts offer an elegant 
solution to this problem. 
   UCM [4] stands for User interface / Control 
object / Model layers. The UCM architecture 
dictates a separation between functional layers, 
such as the user interface and simulation 
models, that are interconnected through the 
control object layer. The control object receives 
and handles events and messages from the 
interface elements (e.g. pressing the buttons, 
turning the knobs etc.) The control object may 
also receive events and messages from the 
model layer. Only the control object is allowed to 
communicate with the model layer. The control 
and model layer objects communicate by sending 
messages to each other. This centralizes access 
to the model layer and makes it perfectly clear 
what information the interface needs, when (in 
which context) the information is sought and how 
the internal functions can communicate with the 
interface. 
   The structure of the control object can be 
based on the state engine data structure 

combining a mechanism for managing context 
(the state network) with a mechanism for 
handling messages (see Fig. 3). The state 
network is a mechanism for keeping track of the 
current learning context of the user and of the 
current context of the simulated objects. The 
context can be changed as the result of 
messages or events from the user interface or 
from the model layer. As the current context 
changes the state network can be programmed 
with the actions to be executed – such as 
sending messages to the user interface layers 
(and consequently change some visual objects) 
or sending messages to the model layers (and 
subsequently change some model inputs, or 
request some model outputs). 
   For the visual description of the behavior of 
state networks we use a visual design 
methodology and notation called statecharts [5]. 
It is an extension of deterministic finite state 
automata (or state machines). For the design of 
the state network we use Stateflow, an extension 
of Simulink. Using Stateflow we can graphically 
describe and test the behavior of state networks 
for the tracking of simulated objects and learning 
context. 
   We have designed a special wizard that 
automatically converts the Stateflow statecharts 
into Microsoft .NET assemblies. These .NET 
components can communicate with the user 
interface layer (created with Microsoft .NET 
Visual Studio and with Macromedia Flash 
components incorporated in the Microsoft .NET 
environment) and with the model layer 
(containing simulation models developed using 
Simulink and converted into .NET components). 
 

 
 
Fig. 3 UCM architecture and the state management 

  
State Network       

User Interface       

Message       
(method invocation)   Display 

    
    
    

Simulation model       

Event 
  Handler  Request   

    Handler  

Event   
    Handler   Request 

  Handler    

Button

Message       
(method invocation)   

    
event  

  request   
        

event or  
request 

  

request     event  

Control Object



 

  65
 
 
 

2.4 Putting it all together 
The preceding paragraphs covered the 
characteristic phases of a medical simulator 
development – writing a scenario, simulation 
model design, converting the model to a linkable 
library, creating GUI elements and eventually a 
statechart. All these are put together in a 
standalone application – a simulator. 
   Model inputs and outputs (available through the 
linked library interface) are connected to 
respective control and visualization elements of 
the user interface (possibly through the Stateflow 
“control object”) and the simulator enters the final 
stage of its development process – testing and 
evaluation in education. This might, of course, 
result in changes to the simulator or even raise 
demands for new simulation models. For an 
example of a user interfaces combining custom 
.NET controls and Flash animations, see  
Fig. 4. 

 
 
Fig. 4 An example of a simulator user interface 
combining custom MS .NET controls (bar graphs) with 
Flash animations (alveoli) 

3. DEPLOYMENT OF SIMULATORS IN EDUCATION 
There are two new interesting features brought to 
e-learning by simulation models – one is the 
scalability of the models and the other is the 
possibility of breaking the control loops of the 
model. 
   As for the scalability (both on the structural and 
time scale), one has to keep in mind that one 
level of detail of a model is not suitable in all 
situations. Consider a model of respiration – 
when explaining the disorders of the breathing 
mechanics, the time-course of every breath 
counts, while when tracking the effects of acid-
base balance disorders on respiration, the time 
constant of the response is in the order of hours. 
The detailed model should be replaced with a 
simplified model with lumped parameters.  
   Another observation from the teaching 
experience with the simulation models is that 
better understanding of physiological functions is 
achieved through the possibility of breaking the 
control loops of physiological regulations. It 
means that just one input can be changed, while 

keeping the other inputs constant, revealing the 
dynamics of the subsystem (so called “ceteris 
paribus” principle).That’s why our models allow 
students to switch various physiological 
quantities to manual control, thus avoiding the 
compensatory effect of other control loops. 
   A good example of a large scale simulator of 
the body-fluid balance, respiration, circulation 
and renal function is Golem [10], [11], Fig. 5. The 
simulator allows the user to set specific 
pathological situations and practice therapeutic 
interventions by changing input values. This 
“virtual therapy” promotes better understanding 
of the physiological and pathophysiological 
mechanisms without putting patient’s health at 
stakes. 
 

 
 
Fig. 5 Acid-base balance model in the Golem 
simulator, implemented in the Control Web 
environment 

4. WEB ACCESSIBLE SIMULATORS 
The last problem to solve is making the 
simulators, as a part of the e-learning content, 
easily accessible to a large number of students. 
These efforts resulted in several approaches to 
web-accessibility of the models. 
   One of the possibilities is running the model on 
a server and exchanging only the input and 
output data with a client. The drawbacks here are 
obvious – for every connected client, there has to 
be a separate instance of the model on the 
server and the amount of data transferred 
between the server and a client per unit time is 
limited. 
   A better solution is running the simulations on a 
client while browsing the e-learning content on 
the internet. A direct method would be using a 
purely Flash simulator interface, because Flash 
applications can execute in the plug-in of a web 
browser. This method is feasible for simple 
models only (e.g. simulating the muscle 
contractions [8]), as Flash is not able to utilize the 
model in the form of the .dll library. The model 
equations have to be implemented in the native 
language of Flash – ActionScript, which is very 
slow due to its interpreted nature. 



 

  66
 
 
 

   Currently the most promising architecture for 
delivering the e-learning content with simulation 
models over the internet is displayed in  
Fig. 6. The educational material is conceived as a 
web page containing text, graphics and Flash 
animations (possibly a Macromedia Breeze 
presentation) with hyperlinks to simulation 
models. The proper downloading and execution 
of the simulation models, as well as managing 
their context within the web presentation, is 
ensured by the model dispatcher, a component 
that is downloaded and installed prior to running 
the first simulation model [12]. 
 

 
Fig. 6 Proposed structure of a modern e-learning 
system combining web accessibility with locally running 
.NET (or CW) simulators 
 
   The Macromedia Breeze learning management 
system offers a couple of beneficial features for 
e-learning content development – rapid creation 
of web accessible presentations from Microsoft 
PowerPoint slides accompanied by a spoken 
commentary and the possibility of preparing on-
line test (with score reporting for individual 
students), to name just two.  

5. CONCLUSION 
The creation of modern educational software 
represents a challenging and complicated project 
requiring the team cooperation of various 
professionals: Skilled teacher / physiologist - who 
prepares the scenario (including the basic design 
of pictures and interactive animations) and tests 
the final products as a teaching aid. System 
analyst – an expert that designs, formalizes and 
tunes the simulation models in cooperation with a 
physiologist. The means of their mutual 
communication are the simulation chips in the 
Matlab/Simulink environment. Graphic designer - 
designs and constructs graphical components for 
simulator user interfaces and produces 
interactive animations in Macromedia Flash. 
Application programmer / Web designer - utilizes 
Microsoft .NET or Control Web as a container for 
the simulation model. He connects it with the 

interactive animations, and other multimedia 
features, and programs the actual educational 
application. And last but not least – the student, 
for whom the whole product is intended and 
whose comments and opinions after testing the 
program should be of high interest to the teacher 
and the developers. 
   It is clear that convenient developer tools and 
design methodology save time and money – 
particularly using appropriate specialized tools for 
the different types of tasks. We use MATLAB / 
Simulink (from MathWorks) for the development 
of simulation models, Stateflow (a MATLAB 
toolbox) for the visual description of  the 
interactive scenario as statecharts, Macromedia 
Flash for the graphical design and scripting of the 
interactive animation components and Microsoft 
Visual Studio .NET or Control Web for the 
development of the final form of the educational 
program. For the interconnection of simulation 
models with the interactive multimedia user 
interface we use UCM architecture. The 
architecture describes the separation between 
the user interface and the underlying model 
behavior layers. When applied to the creation of 
interfaces, the architecture promotes good 
design practice because it centralizes the 
coordination of the user interface, making the 
interface behavior easier to understand, design 
and validate. 

 

REFERENCES  
[1] Grodins F.S., Buell J., Bart A.J.:  “Mathematical analysis 

and digital simulation of the respiratory control system,” J 
Appl Physiol., vol. 22, 1967: pp. 260-276. 

[2] Guyton A.C., Coleman T.A. and Grander H.J.: 
“Circulation: Overall regulation,” Ann. Rev. Physiol., 
1972, pp. 13-41 

[3] Cobelli C., Bettini F., Caumo A.and Quon M.J.: 
“Overestimation of minimal model glucose effectiveness 
in presence of insulin response is due to 
undermodeling,” Am. J. Physiol. vol. 275, (Endocrinol. 
Metab. vol. 38), 1998,  pp. E1031-E1036 

[4] Kayne J., Castillo D.: “Flash MX for interactive 
simulation,” Thomson Delmar Learning, 2003. ISBN 1-
4018-1291-0. 

[5] Harel D.: “Statecharts: a visual formalism for complex 
systems,” Science of Computer Programing, 8, 1987, pp. 
231-274. 

[6] Bily, R., Cagas P. et al.: “Control Web 2000 - Object 
Oriented Industrial Information and Control System,”. 
Computer Press, Prague, 1999 (in Czech). ISBN 
8072262520. 

[7] Kofranek J., Andrlik M., Kripner T., Masek J.: “From 
Simulation chips to biomedical simulator,” in Amborski K, 
Meuth H, (eds.): Proc. of 16th European Simulation 
Multiconference, Darmstadt, Germany, 2002. ISBN 90-
77039-07-4, pp. 431-435. 

[8] Wünsch Z., Kripner, T., Kofranek, J.: “Mechanical 
Properties of a Skeletal Muscle – Multimedia Simulation 
Educational Software,” Proc. of 5th EUROSIM Congress 
on Modeling and Simulation. (eds: G. Attiya and Y. 
Hamam), Paris, 2004 

[9] Smutek D., Kofranek J., Maruna P.: “Mathematical 
Model of Cytokines and Acute Phase Proteins Induction 
after Polytrauma and after Infectious Stimulus. Potential 
Diagnostic context,” Proc. of Intl. Trauma Congress, 11-
14 June 2003, Durban, South Africa, p 51. 

[10] Kofranek J., Anh Vu LD, Snaselova H., Kerekes R., 

INTERNET

.NET platform

SERVER WITH 
EDUCATIONAL 

CONTENT
Web

e-learning
presentation

Dispatcher
of simulation model

Simulation
model 

downloaded
from the server

CLIENTRuntime 
libraries for

Control Web
applications

ASP .NET



 

  67
 
 
 

Velan T.: “GOLEM – Multimedia simulator for medical 
education,” in: Studies in Health Technology and 
Informatics, vol. 84, Proc. of the 10th World Congress on 
Medical Informatics MEDINFO (V.L. Patel, R. Rogers, R. 
Haux (Eds.)), IOS Press, Amsterdam, Berlin, Oxford, 
Washington DC, 2001. 

[11] Kofranek J., Andrlik M., Kripner T., Masek J., Velan T.: 
"Simulation chips for GOLEM – multimedia simulator of 
physiological functions," in Simulation in the Health and 
Medical Sciences (James G. Anderson, M. Katzper 
(Eds.)). Society for Computer Simulation International, 
Simulation Councils, San Diego, 2002, pp. 159-163 

[12] Kofranek J., Andrlik M., Hlavacek J., Stodulka P.: “E-
learning applications with simulation models in 
Macromedia Breeze” (in Czech). Proc. of Medsoft 
conference, Action M, Prague, 2005, in press. 

[13] Andrlik M., Kofranek J., Kripner T.: “Physiology Blockset 
for Matlab/Simulink”, open source software library 
http://patf-biokyb.lf1.cuni.cz, 1st Faculty of Medicine, 
Charles University, Prague, 2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


